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Summary 

We consider a modified Taylor problem, with the fluid flowing between a rotating inner circular cylinder and a n  

outer stationary surface whose radius is a constant  plus a small and slowly varying function of the axial 
co-ordinate z. This variation is chosen in such a way that the flow is locally more unstable near z = 0 than near 
z = _+ oo, so that Taylor vortices appear more readily near z = 0. The theory is developed to show how vortices of 
strength varying with z develop as the speed of rotation is increased through a critical value which is a 
perturbation of the classical value. Wave number  changes in the axial direction are also calculated. 

1. Introduction 

There has been considerable interest recently in modifications of the classical B6nard and 
Taylor-vortex problems, with a view to possibly obtaining solutions to more physically 
realistic problems. In fact, there is now considerable literature and we shall not attempt a 
survey here but rather mention just those papers which are closely related to the problem 
tackled here. 

Kelly and Pal [1] considered a small spacially periodic perturbation of the wall 
boundary conditions in the B6nard problem, obtaining a theory which smoothed out the 
abrupt bifurcation of classical theory. This work was followed by Eames [2] for the Taylor 
vortex problem, in which the outer boundary was perturbed in a way to be described in 
this present paper. Eagles [3] perturbed the lower wall in the B6nard problem, and Walton 
[4] made a different study by performing a perturbation of the temperature of the lower 
wall in the B6nard problem in a more general way. The present paper is based in part on 
Eames' [2] thesis. 

The mathematical theory of the B~nard and Taylor problems is similar in many ways. 
Thus many of the results of Eagles [3] and Walton [4] have analogues in the Taylor 
problem. However, the results presented here are original and interesting in three respects. 
Firstly, the steady state slowly varying base flow for the Taylor problem is much more 
complicated. Secondly, the expansion for the disturbance is taken to a higher order, 
enabling us to find wave number changes inaccessible to Eagles [3] and Walton [4]. 
Thirdly, the detailed numerical calculations given in Sec. 7 provide data which is quite 
new and should be amenable to experimental verification. 

Let r, 0, z be cylindrical polar co-ordinates. We consider the flow of viscous fluid of 
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constant density p between an inner cylinder of radius r = R~ rotating with angular 
velocity f~ and an outer stationary boundary of radius r = H ( Z ) .  Here e is a small 
parameter  and 

Z = ~ z  (1.l) 

is the "slow" variable in the z-direction. 
After trial and error a form for H ( Z )  amenable to analysis was found to be 

H( Z )  = R 2 + e2dF( Z ) / 2  (1.2) 

where 

d = R 2 - R 1 . (1.3) 

This is a particular case of a type of variation 1 + ~F(ez)  considered by Walton [4]. This 
enabled us to approximate both the steady state flow and the Taylor-vortex-like flow over 
the whole range - ~ < z < ~ ,  without any of the singularities which occur for some other 
cases (e.g. for an outer radius r = H ( Z ) ;  see Walton [4]). The particular form of (1.2) was 
determined by the requirement that using the dimensionless variable x defined in (3.3) the 
outer radius was of the form x = ½(1 + e2F(z)) which was convenient for the analysis. 

The parameters which specify the geometry and physics of the problem are the Taylor 
number 

T =  2a2R~d3/(v2(R~ + R2)) (1.4) 

where v is the kinematic viscosity, and the radius ratio at z = 0 

n = R1/R2. (1.5) 
It  is also convenient to define a local Taylor number 

T =  2 ~ R ~ d 3 / ( v 2 ( R l  + R2L)) (1.6) 

where dL(Z )  and R 2L(Z) are the "local" gap width and outer radius respectively, 
We shall here choose F(z )  in such a way that 

(i) F ( Z )  iseven,  ( i i )  F ' ( + o 0 ) = 0 ,  

(iii) F ( Z )  ~< 0, (iv) F(0)  = 0. 

A typical example is F ( Z ) =  - tanh2(o~Z) and a typical geometry is illustrated schemati- 
cally in Fig. 1. 

In such a case the local Taylor number is smaller near z = o0 than at z = 0. If  then we 
increase the Taylor number (1.4) very slowly we might expect instability of the laminar 
Couette-like flow (described in Sec. 2) to occur more readily at the centre (z near zero) 
than at the ends. This idea is of course oversimplified but it provides a guide. We must 
take account of the derivatives with respect to z, which will be small in our case, to obtain 
a satisfactory theory. 

In the subsequent work we develop a consistent theory for the linear stability problem 
by considering a neutral disturbance based on the most unstable mode of conventional 
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(parallel walled) theory, with wavenumber X¢, where the critical Taylor number for the 
parallel wall case is T C. 

The salient features of the results are: 

(i) the increase in the critical Taylor number over the parallel walled case (see (7.1)); 
(ii) the rather rapid decay of the strength of the vortices as Izl increases (see Figures 2 and 

3) and 
(iii) the change in wavenumber with z. 

2. The slowly varying basic flow 

The boundaries are r = R 1 and r = R 2 + ½ e 2 ( R 2  - R I ) F ( Z  ) where Z = ez. The inner 
cylinder is rotating with angular velocity ~21 while the outer boundary is at rest. 

For e = 0 we have the well-known Couette solution for the velocities in the r, 0 and z 
directions respectively, 

. = 0 .  V=Vo(r)=.4,'+8/r, w=O (2.1) 

where A - f ] l R 2 / ( R  2 R ~ )  and B 2 2 2 = - = ~ 2 ] R I R 2 / ( R  2 - R1 z) and the pressure is given by 
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p =p0( r )  = p[AZr2/2 + 2ABlog r -  ½BZ/r 2 + C], (2.2) 

where C is a constant. 
For the general case when F(Z) is even and F'( +_ m ) =  0 we denote the velocities and 

pressure by (u s, Vs, w s, Ps) and symmetry arguments suggest an expansion 

u s = eZu2(r, Z) + O(e4), (2.3a) 

v s = Vo(r ) + eZvz(r, Z) + O(e4), (2.3b) 

W s = ~Wl(r , Z)  --~ E3W3(r, Z)  -'~ o(eS) ,  (2.3c) 

Ps =Po(r )  + e2P2( r, Z) + O(E4), (2.3d) 

where the functions ui(r, Z) and vi(r, Z) are even in Z and the functions w~(r, Z) are 
odd in Z. On substituting the above form of expansion into the Navier-Stokes and 
continuity equations we equate coefficients of powers of e and solve the corresponding 
equations with the boundary conditions 

us=vs=ws=O on r=R2+e2dF(Z)/2,  

u s = % = 0  and vs=~lRl o n  r = R  1. 

The boundary conditions on the outer wall for the u~, v~ and w i are dealt with by a Taylor 
expansion about r = R 2.  An extra assumption is made that 

u s -*0  and w s--*0 as Z ~  +c~. 

This is consistent with F'(Z) --* 0 as Z -* _+ o¢ and a purely circumferential Couette flow 
at infinity. 

Solving the resulting equations gives 

w,(r ,Z)=O, u2(r,Z)=O, (2.4) 

a'R2R2F(Z) R~I (2.5) z )=  j, 

f~ER~R2dF/dZ 
% ( r , Z ) =  Q3(r) (2.6) 

where 

R2R 2 
+ ~ l o g / - ~ l ) l o g ( k ) +  (R21+R2)[(r2-R2)l°g(r/R')]2 

+(bo_ l) (R~ + R2) [ R~l°g(r/R2)-R221°g(r/R1) ] 
2 r2 + log(Rz/RI) " (2.7) 
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The continuity equation must be used to find b 0 which along with the boundary 
conditions on w 3 gives the resulting equation 

fR~rw 3 ( r ) d r  = 0. (2.8) 
R~ 

It can be shown that b 0 depends only on x I = R I / R  2 and two cases were solved 
numerically with the results 

b 0 = 0.3358 for ~ = 0.5, (2.9) 

b o = 0.0256 for 7/= 0.95. (2.10) 

We can then find 

pz(r ,  Z ) =  P a ~ R 4 R 2 F ( Z )  P2(r )  (2.11) 

where 

Pz( r )  = - r  2 + 2(R~ + R~)(log r / R 2 )  + - 7 7 -  + 2b0(R1 z + R2).  (2.12) 

This summary of the results is necessarily condensed. The work is not altogether trivial. 
Further details may be consulted in Eames [2]. 

3. The perturbation equations in matrix form 

We follow Eagles [5] and write the disturbance equations in dimensionless matrix form as 
follows. We set u = u', v = v s + v', w = w s + w', p =Ps + P' and ignore terms of O(e4). The 
primed variables are functions of r, z and t. The following constants are needed 

d = n  2 - R , ,  R o = ( R , + n 2 ) / 2 '  6 = d / n  o , a = S R ~ / ( R , + n z f .  (3.1) 

The dimensionless disturbance velocities and pressure, defined as in Davey, DiPrima and 
Stuart [6] are u, v, w and p where 

u ' =  w'= v'= a,nov/2,  (3.2) 

while the dimensionless co-ordinates x, ~', ~" and z* are given by 

r = R  o + d x ,  z = d ~ ,  t=d2"c/v,  Z = d z * .  (3.3) 

We note especially that 

z* = e~ (3.4) 

is the "slow" axial variable. 
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The Taylor number is here defined as 

T=aER~d3/(v2Ro) (3.5) 

and the radius ratio is 

*/= R1/R 2. (3.6) 

These two parameters coupled with f(z*) specify the problem. The equations of motion 
also contain the dimensionless functions derived from the basic steady state flow, 

G(x) = 1/(1 + 3x), (3.7) 

o(x) = (1 +* / ) /2  + (1 -* / )x ,  (3.8) 

~0(X) 2*/2 q- 8*/2 G2(x) ,  (3.9) 
1-*/2 (1 +*/)2(1 _,/2) 

~2(x)  = 2*/2 - 8714 G2(x),  (3.10) 
( 1 - 7 2 ) ( 1  +*/) (1 +*/)3(1 _*/2) 

1 - */2G(x) (3.11) 
V2(x) -- 4(1 - */)G(x) (1 - */2)(1 + */)' 

*/2 [ 1 + */2 [( 2 
W3(x) = 2(1 - */)3 (1 - ,/2)2 [ 2 log */ , ,o  - 7/2) log o log */ 

*/2 
+ (b 0 - 1)((0 2 -  1) log */+ (1 _*/2)log 0 ) ) +  : l o g  o(log 0/*/) 

16 logl * / ( ( ° 4 - 1 ) l ° g * / + ( 1 - * / 4 ) l ° g ° )  ] (3.12) 

f ( z* )=F(Z) .  (3.13) 

Using the derivative with respect to x of the continuity equation to eliminate O2U//OX2 
from the first momentum equation we are able to write the disturbance equations in the 
following matrix form, where nonlinear terms have been neglected: 

3U3___x - A U -  B OOr3,r - e2f(z*)CU + e3 ~fz*DU + . . .  = O. (3.14) 

Here 

U = [p ,  v0, w0, u, v, w] tr (3.14a) 



and v o = Ov/Ox, i% = aw/ax.  The matrices are given by 

269 

A = 

0 0 --  a/O~" a 2 /0 ~ ' 2  

0 - S G  0 0 

a/a~" o -~G 0 
0 0 0 - S G  

0 1 0 0 
0 0 1 0 

- T ~  o 0 

--  a 2 / ~  2 + 8ZG 2 0 

0 - ~ 2 / a ~ 2  

o -a/a~ 
0 0 
0 0 

, (3.14b) 

B =  

O Oo, !] 
0 0 

O O 

(3.15) 

C =  

o 1 oTO2 l 
O 1 +  7 

0 0 
O O 

(3.16) 

D = 

O 

O 

rw~ 

0 

TdW3 
- - 8 7  

0 0 

- T W ~  V2 

0 - TWs-~  

0 

(3.17) 

The equation (3.14) has to be solved subject to the conditions that U =  O on the inner 
and outer boundaries. For the vector U of six components this is labelled 

f13: the last three components of Va re  zero at x = 1 /2  and x = (1/2){1 + e2f(z*)}. 

(3.18) 

The additional boundary condition 

U---' O a s z *  ~ +oo (3.19) 

is imposed. A less restrictive condition that U be bounded as z* ~ + oo is acceptable, but 
it has been found that the most unstable disturbance results from (3.17), see Eames [2], 
and Eagles [3]. We shall next search for the marginally stable linear solutions of (3.12) 
with au/az = o .  
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4. The expansion procedure for the linear problem 

In the usual parallel wall theory there is a neutral curve in the (X, T) plane on which the 
disturbance has zero growth rate, where the mode of disturbance has a factor sin h~. The 
minimum point of this curve is denoted by (k~, T~). In the present case we may expect a 
neighbouring solution and therefore we set 

u= e'~,~[~,(~, : )  + ~ ( ~ ,  z*)+ : .~(~,  z*) + ...] 

+ complex conjugate. (4.1) 

This is the appropriate expansion for the linear theory. We also set 

T = T~ + eT~ + e2T~ + . . .  (4.2) 

Substituting (4.1) and (4.2) into (3.14) we find 

E(')(u,) = 0, (4.3) 

~O)(u2) = B (l) Oul + T~A2u ,,  (4.4) cl 0Z* 

~(1)(U3) = S (1) 01L2 -4- nc2 32"1 
cl OZ* + T~A2U2 Oz .2 

Here 

+ T~A2u ~ - f ( z * ) C ~ n  I , 

~(')(u,) -- u~,u (~) °~o: + ~ A ~ . ~  + n~ 
02U2 

OZ .2 

+ T~A2u 2 - f ( z * ) C c u  z + T~A2u , 

- f ( z * ) T ~ C d u  , - ~fz, D~l)u,. 

e(P'= ~ - A~p), 
0x 

with A~ v) defined by 

{A~ ?) is obtained fromA by replacing Tby  T c and ~/0~ by ipXc. ) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 
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while the matrices are defined as follows: 

Be(1 m) 

0 0 - 1  

0 0 0 

1 0 0 

O 

2 im)t  c 

0 

0 

0 
0 
0 

0 

- 2  im ~ 

0 

0 
0 
0 

0 

0 

- 2  im )~c 

- 1  
0 
0 

(4.9) 

Bc2 = - B ,  

Cc~ ~--- 

O 0 

0 
0 

O 

~-~2 
0 
0 

0 

(4.10) 

<m)_ [0 
o~ - 

0 

im X ~T~.W 3 

0 

- ~ d W , / d x  

0 

- im h cT~W 3 

0 

O 

0 1 V2 
- im ~cT~W3 ' 

(4.11) 

A 2 =  o 0  o 0 0 00o (4.12) 

and 

C c is C with T replaced by T,.. (4.13) 

The boundary conditions on the outer wall x = (1/2)(1 + e2f(z*)) are obtained by 
expansion about x = 1 /2  and we obtain f o r j  = 4, 5, 6 

u,j(~, ~*)= o, uv(k,z*)+½/(z*)Uijx(k,z*)=O (4.14) 

and 

U2j(I,Z*)=O, U4j(1,Z*)'+II(z*)U2jx(I,z*)=O (4.15) 

where 

~Ukj 
Ukjx = ON 

and u , j  denotes t h e j t h  component  of u k. The inner wall conditions give 

UIj(--I,z*)=O, U2j(--I,z*)=O, U3j(--1,Z*)~-O. (4.16) 
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5. Solutions of the disturbance equations 

We need to use the adjoint eigenfunction as defined in Eagles [5]. This is denoted by f~ 
where 

aL ~---~ + { A~') }trL = O. (5.1) 

and where the first three components of L are zero at x = _+ ½. 
This is used to obtain conditions for ordinary differential equations of the form 

3u 
~x A~')u=R(x)  (5.2) 

to have solutions, by multiplying by L tr and integrating from - 1/2 to + 1/2, using the 
boundary conditions. 

The general solution of (4.3) together with its homogeneous boundary conditions, based 
on the most unstable eigenfunction ul~(x) is 

u, = ~ ( z * ) u , , ( x ) .  (5.3) 

Here uH(x ) is the critical eigenfunction of the standard straight walled problem with 
= ~,¢ and T = T~. The normalization is arbitrary, but here we took the second component 

of ull(x) at x = - 1/2 equal to 1. 
A crucial result used in the following is that 

f_'/: LtrB~(,l)ulldx = 0. (5.4) 
1/2 

This can be deduced from the fact that (~¢, To) is a minimum of the neutral curve for the 
parallel wall case, (see Eagles [2], Eames [3]). 

Substituting (5.3) into (4.4), using the existence condition and (5.4) yields 

T ~ = 0 .  

We then see that 

d+ 
u2(x, z*) = -~z.~2,(x) + S(z*)u, ,(x)  

where g21 satisfies 

~ ) ( ~ 2 , )  = s~,')u,; ~2 (5.5) 

with the boundary conditions being denoted by 

(82: the last three components to be zero at x = + ½} (5.6) 

and where S(z*) is at present unknown. 
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where 
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Proceeding in the same way we find that the condition for (4.5) to have a solution is 

d2----~--~ + ~b [--~2 + af(z*)] = 0  (5.7) 

1 t t r / ' l  ~ f ~Io ~ ) ~ . ~ ( ~ )  1/2 ,~ - .[,, CcUlldX 
- 1/2 

a = f l / 2  (5 .8 )  
T~J L'rA2u,dx 

- 1/2 

and T 2 is the constant appearing in the parallel wall neutral curve expansion 

T -  To= T2(•-  2,¢)2 + .. .  (5.9) 

A general integral expression for T 2 is given in the Appendix. Numerical values of T 2 were 
obtained (see Eames [2]) as follows: 

T 2 = 256.506 for 7/= 0.95, (5.10) 

T2 = 440.282 for , /=0 .5 .  (5.11) 

We note that a depends on ,/. 
The amplitude equation (5.7) together with the boundary conditions 

~p~0 as z*---, +o~ (5.12) 

will determine the possible values of T2*. This will be discussed later, but we note the only 
solutions for ~k are either odd or even when f(z*) is even. 

The expansion may be continued with 

dS 
U 3 =- ~ f ( g * ) h 3 l ( X  ) + ~ g 3 l ( x )  + " ~ g ,  g 2 l ( X )  + P(z*)Ull(X) (5 .13)  

where 

~( ' ) (h31  ) = - a [ (  B(1'~21 --{- Bc21gll ) q- Ce/.gl, ] (5.14) 

and 

~'"(g3,) = - ~ [ n#'~2, + nc2,,,, - r2A~,,,, ] 

with boundary conditions 

h3,j(-½)= gm(-½)=O 

and 

I 1 

for j = 4, 5 and 6. 

(5.15) 

(5.16) 

(5 .17)  
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Using (5.7) and (5.17) we eventually find that the condition for (4.6) to have a solution 
is 

+S(z*) + af(z*) =rlf(z* ) +r2~clz,+r3dz, dz .2 T 2 

where r~, r 2 and r 3 are constants. The boundary conditions are 

S(z*)--->O as z* ~ _+ oo. (5.19) 

By multiplying (5.18) by ~k(z*) and integrating from - oo to oo and remembering that 
~k(z*) is either odd or even we find 7"3* = 0. 

The values of rl, r 2 and r 3 are expressible in terms of integrals of known functions (see 
Appendix) and are purely imaginary. 

It turns out that S(z*) is purely imaginary. It thus gives a higher order correction to the 
waven umber. 

In fact for a typical velocity component U 4 we can show that the wavenumber * is 

d (Si)6214"u) d ( d ~ ) _ _  
N ( U 4 )  = ~'c + e2 ~ "-~ % ~,~,<r> dz* ~ z  */@ + " "  

t*l14 
(5.20) 

where gz~il)4 is the imaginary part of g214 (its real part being zero), ~l14"(r) is the real part of Ull 4 
(its imaginary part being zero). Also S = iS i with Si real and + is also real. 

It should be noted that the wavenumber depends both on x and z*. This will result 
physically in changes both in size and shape of the Taylor-vortex cells due to the varying 
radius of the outer boundary. 

6. Solutions of the amplitude equations 

We take as a specific example 

f(z*) = - tanh2~0z *. 

We can find simple cases by choosing special values of the constant o~ such that 

092  a 
j ( j  + 1) 

for j = 1, 2, 3 . . . .  and a is the constant occurring in the amplitude equation (5.7). 
The eigenvalues are then 

7"2* = aT2 [1 ( J - n ) 2  
j ( j  + 1) 

* For an arbitrary complex function of Z the wavenumber may be defined as O/O~'(arg f(Z)).  

(6.1) 

(6.2) 

(6.3) 
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where n < j ,  and the corresponding eigenfunctions are of the form 

~ j  = A,j sechJ-"( coz* )wl (tanh ¢oz*) (6.4) 

where w~(u) is a polynomial in u of degree n. 
For example wi th j  = 1 we have just one eigenvalue with n = 0. This is 

T~ = ½aT 2 (6.5) 

and the eigenfunction is 

~b01 = A sech(wz*). (6.6) 

With j = 2, there are two eigenvalues 

T~ = ½aT 2 and T2* = 5aT2/6 (6.7) 

and corresponding eigenfunctions are ~P02 = sech2(coz*) and ~b lz = sech(wz*) tanh(coz*). 
Some further details are given in Table 1. 

We shall be concerned only with n = 0 because this gives the lowest value of T at which 
neutral stability occurs for a fixed co (i.e. fixed j ) .  

The solution for S(z*) is S = iS i where 

[ 2r2i+jrli ] 
Si(z* ) =/~0 j (r3i- r,j)z* + ( j  + 1)co tanh(coz*) (6.8) 

where rki is the imaginary part of rk, the real part being zero in each case. 

7. Numerical  results and discussion for 11 ffi 0.5 

The methods of computation are similar to those of Eagles [5] and need not be described 
again, except to say that numerous consistency checks were made by changing arbitrarily 
the scalings of the various functions involved and following through the results numeri- 
cally and theoretically. Comparisons were made with earlier work wherever possible. 

We concentrate here on presenting some detailed results for the case ~ = 0.5, j = 1 with 

Tab le  1 

Eigenvalues  and  e igensolu t ions  for ~ = 0.5 and fixed j and  n 

j n ¢o T~ 4',,j(z*) 

1 0 1.9354 1649.25 

0 1099.50 
2 1.1174 

1 2748.76 
0 824.63 

3 1 0.7901 2199.00 

2 3023.63 

A sech z* 
A sech2wz * 

A sech ¢oz* tanh  wz* 
A sech3toz * 

A sech2wz*tanh ~0z* 

A sech ¢oz*[tanh2wz * - ~] 
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f ( z * )  = -tanh2o~z * as described in Sec. 6. There is then only one isolated eigenvalue T2* 
= ½aT 2 and the overall critical Taylor number is 

Tcri t  ~-~ T c .Jr e 2 T ~  "4" . . .  

= 3099.8 + e21649.25 + .. . , .  (7.1) 

Thus the flow is more stable than the straight walled case with ~/= 0.5. 
For T > Tcrit we expect Taylor-like vortices to appear with a positive growth rate. These 

will reach an equilibrium amplitude in practice due to the effects of the nonlinear terms. 
See Eagles [3], Eames [2] for details of this nonlinear theory. 

But nevertheless for T just slightly greater than T~ the linear theory gives a good guide 
to the appearance of the vortices, and could be compared with experiment in a suitable 
apparatus. 

The values of the constants needed were computed to be as follows 

Xc = 3.16242, T¢= 3099.78, T2=440.2819, 

a = 7.4918, rli = - 1.4179, ~i = 1.3302, 

~i = 0.8503, ~ = 1.9354. 

Using the theory of Sections 5 and 6 we computed the solution to order e for both e = 0.1 
(Fig. 2) and e = 0.5 (Fig. 3), where the fourth component of U is plotted agains t z*, this 
being the x-component of velocity. Results for other components are similar. Table 2 will 
enable the reader to compute solutions for other values of e. 

The main feature is the comparatively rapid decay of the strength of the vortices as Iz*l 

t.i 4 

6'  

4- 

2- 

-2 

-4 

-6 

0 . 4 ~ 0 - 6 ~ 0 - 8 ~  , / \ , / \ , A , ~ , [0;2 , , , 1 - 0 A 1 - 2  .'-'~ 1.4 1.6 1-8 1-8 2"0 2.2 

Z* 

F igure  2. Veloci ty U4 for */= 0.5, x = 0 , j  = 1, e = 0.1. 
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6 

Figure 3. Velocity I!& for q = 0.5, x = 0, j = 1, E = 0.5. 

increases, due primarily to the multiplying factor of #(z*) = sech oz* in the first term of 
the expansion. A less obvious feature is the change in axial wavenumber both with x and 
z*. Compared with the parallel wall solution with q = 0.5 the size of the vortices near the 
centre (z* = 0) are smaller and they also take a slightly different shape. For the case j = 1, 
E = 0.5 the wavelength is about 10% less near z * = 0 than the parallel walled wavelength. 
This effect should be distinguishable experimentally. 

In order to emphasise this effect we show in Fig. 4 a plot of the wavenumber for U, as 
defined in (5.20) plotted against vL, where qL is the “local” radius ratio, that is 

RI 
1L = R, + e’df( z*)/2 

(74 

which in this case increases from 0.5 at z* = 0 to 0.532 at z* = co. 

Table 2 
Velocity component functions for 7 = 0.5. Here i denotes 0, u ,,,,, is the fourth component of u,, and g2,.., is 
the fourth component of g,, 

x hl.4 i 821.4 

-0.5 0.0 0.0 
-0.4 - 1.196 - 0.463 
-0.3 - 3.410 1.226 
-0.2 - 5.295 1.779 
-0.1 - 6.238 1.971 

0.0 -6.121 1.839 
0.1 -5.128 1.487 
0.2 - 3.598 1.029 
0.3 - 1.935 0.561 
0.4 - 0.576 0.174 
0.5 0.0 0.0 
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F i g u r e  4. W a v e  n u m b e r  o f  U 4 at  x = 0 .2  fo r  ~ /=  0 . 5 , j  = 1, e = 0.5. 

We note that this comparatively small change in the radius ratio produces a drastically 
different flow for T just greaterer than Tcrit than would be obtained for the straight-walled 
case, with the comparative strength of the vortices decaying rapidly with z* (as in Fig. 3). 
This again should be observable experimentally in a finite length apparatus, as end effects 
due to the vortices should be much less important. If for T <  Tcrit o n e  could obtain 
experimentally Couette circumferential flow over a range of z* of say - 10 to 10 then the 
effect of increasing T should be to the type of flow shown in Fig. 3. The nonlinear theory 
of Eames [2] shows that the pattern of Fig. 4 is retained essentially as T increases slightly 
above Tcrit , with the amplitude increasing proportionally to T ~  T~rit. 

In Figs. 5 and 6 we plot the stream lines for the vortices of Fig. 3. These were computed 
by using the Stokes stream function ~, obtained from the velocity expansion, and the 
plots are of curves • = c for various values of c, but it should be remembered that the 
normalization adopted here for our linear theory is arbitrary. 

There is one other point to be made. Both Eames [2], and Eagles [3] show that the 
choice of the type of expansion made here, starting with e~Xo~Ul(X, z*), is important. One 
cannot obtain a neutral solution with a different basic wavelength, for the expansion 
becomes inconsistent if not based on Xc, To. Thus the linear neutral solution, and the 
Taylor-vortex-like flow based on it, appears to be unique in this sense, unlike the results of 
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parallel wall theory. As T increases through Tcrit only one unique Taylor vortex type flow 
would be possible according to the present theory. 
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A p p e n d i x  

Formulae for T 2, r 1, r 2 and r s 

The required formulae are 

Ll /2  fatr( B~])g2t _ B~EUn)dx 
1/2 

f 1/2 LtrA2UlldX 
1/2 

½[ jfa, rg2,]~=l/2 + f l / 2  j.atr [B~,h3, _ C~g2, _ aB~2g2,]d x 
- 1/2 

T2 f /2 fatrA2UlldX 
- I/2 

- r2  = 

l /2  ¢ t r  [ D ( I ) .  

~/2~o t,-'d 53~ + T~A2g2~ - (T~/T2)Bc2g2~]dx 

T2f  1/2 fat rA 2 . l i d  x 
'.' - I/2 

- r 3 =  
] 

- 1/2 [ 

T2 f 1/2 f2trA2UlldX 
• ' - 1/2 


